Search results for "Hafnium oxide"

showing 2 items of 2 documents

Synergistic Use of Electrochemical Impedance Spectroscopy and Photoelectrochemical Measurements for Studying Solid State Properties of Anodic HfO2

2017

Within the past years, intense research has been carried out on HfO2 as high k material, promising candidate to replace SiO2 as gate dielectric in CMOS based devices (1), and as metal oxide for resistive random access memory (ReRAM) (2). For both technological applications compact, uniform and flat oxides are necessary, and a detailed understanding of their physical properties as a function of the fabrication conditions is strongly. Hafnia performance can be significantly influenced by carrier trapping taking place at pre-existing precursors states (induced by oxygen vacancies, interstitial ions, impurities acting as dopants), or by self-trapping in a perfect lattice, where the potential we…

EngineeringSettore ING-IND/23 - Chimica Fisica Applicataanodizing HfO2 CMOS ReRAM Electrochemical Impedance Spectroscopy Photoelectrochemical Measurements Solid State Propertiesbusiness.industrySolid-stateAnodizing Hafnium oxide Nb doped HfO2 Electrochemical Impedance Spectroscopy Photocurrent Spectroscopy Solid State Properties CMOS ReRAMNanotechnologybusinessAnodeDielectric spectroscopy
researchProduct

Local structural investigation of hafnia-zirconia polymorphs in powders and thin films by X-ray absorption spectroscopy

2019

Björn Matthey (Fraunhofer IKTS, Dresden) is acknowledged for providing HfO2 and ZrO2 powders on short notice after DESY’s renowned customs office punished us. Parts of this research were carried out at Petra III at DESY, a member of the Helmholtz Association (HGF). The experiments on single Si:HfO2 thin film samples were performed at the CLAESS beamline at ALBA Synchrotron with the collaboration of ALBA staff. We would like to thank Edmund Welter for assistance (in using beamline P65) and DESY for enabling this research for proposal no. 20160591 and for travel support. T.S. acknowledges the German Research Foundation (DFG) for funding this work in the frame of the project “Inferox” (project…

Ferroelectrics670Materials sciencePolymers and PlasticsAbsorption spectroscopyexafsExtended X-ray absorption fine structure X-ray absorption near edge structure Ferroelectrics Hafnium oxide Zirconium oxide02 engineering and technologydopants01 natural sciencesferroelectric propertieshafnium oxideTetragonal crystal systemformer soviet-unionzirconium oxideddc:6700103 physical sciences:NATURAL SCIENCES:Physics [Research Subject Categories]Zirconium oxideX-ray absorption near edge structureThin filmx-ray absorption near edge structureExtended X-ray absorption fine structureHafnium oxideErweiterte Röntgenabsorptionsfeinstruktur Röntgenabsorptionsstruktur in Randnähe Ferroelektrika Hafniumoxid Zirkoniumoxid010302 applied physicsX-ray absorption spectroscopybiologyExtended X-ray absorption fine structureferroelectricsMetals and Alloyshfo2021001 nanoscience & nanotechnologyHafniabiology.organism_classificationXANESstabilizationdielectricsElectronic Optical and Magnetic Materialsoxygen-ion conductorselectrochemistryextended x-ray absorption fine structureChemical physicsCeramics and Compositesinterface0210 nano-technologyMonoclinic crystal systemActa Materialia
researchProduct